
UCRL-ID-129903 

Supporting Large-Scale Computational Science 

Ron Musick 

October 1,1998 

This is an informal report intended primarily for internal or limited external 
distribution. The opinions and conclusions stated are those of the author 
and may or may not be those of the Laboratory. 
Work performed under the auspices of the Department of Energy by the 
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 



DISCLAIMER 

This document was repared as an account of work sponsored by an agency of the United States Government. 
r 

Neither the United States Government 
nor the University o Cahfomia nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or tespcnsibiity for 
the accuracy, completeness, or usefulness of any mformation. apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendatton, or favoring by the United States Government or the University of 
California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the 
University of California, and shall not be used for advertising or product endorsement purposes. 

This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from the 
Office of Scientific and Technical Information 

P.O. Box 62, Oak Ridge, TN 3783 1 
Prices available from (615) 5768401, FIS 626-8401 

Available to the public from the 
National Technical Information Setvice 

U.S. De artment of Commerce 
52!5 Port Royal Rd., 

Springfield, VA 22161 



Supporting Large-Scale Computational Science* 
http://www.llnl.gov/*/dbms/index.html 

Ron Musick 
Center for Applied Scientific Computing 

rmusick@llnl.pov 
10198 

Abstract 

A study has been carried out to determine the feasibility of using commercial database 
management systems (DBMSs) to support large-scale computational science. 
Conventional wisdom in the past has been that DBMSs are too slow for such data. 
Several events over the past few years have muddied the clarity of this mindset: 

1. 

2. 

3. 

4. 

Several commercial DBMS systems have demonstrated storage and ad-hoc quer 
access to Terabyte data sets. 
Several large-scale science teams, such as EOSDIS [NAS91], high energy physics 
[MM971 and human genome [Kin931 have adopted (or make frequent use of) 
commercial DBMS systems as the central part of their data management scheme. 
Several major DBMS vendors have introduced their first object-relational 
products (ORDBMSs), which have the potential to support large, array-oriented 
data. 
In some cases, performance is a moot issue. This is true in particular if the 
performance of legacy applications is not reduced while new, albeit slow, 
capabilities are added to the system. 

The basic assessment is still that DBMSs do not scale to large computational data. 
However, many of the reasons have changed, and there is an expiration date attached to 
that prognosis. This document expands on this conclusion, identifies the advantages and 
disadvantages of various commercial approaches, and describes the studies carried out in 
exploring this area. The document is meant to be brief, technical and informative, rather 
than a motivational pitch. The conclusions within are very likely to become outdated 
within the next 5-7 years, as market forces will have a significant impact on the state of 
the art in scientific data management over the next decade. 

* This work was performed under the auspices of the U.S. Department of Energy at LLNL under contract 
no. W-7405Eng-48. 
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1 Introduction 
Business needs have driven the development of commercial database systems since their 
inception. As a result, there has been a strong focus on supporting many users, 
minimizing the potential corruption or loss of data, and maximizing performance metrics 
like transactions per second, or TPC-C and TPC-D results. These optimizations have 
little to do with the needs of the scientific community, which typically revolve around a 
great deal of compute and I/O intensive analysis, often over large data with high 
dimensionality. In addition, these optimizations also have little to do with supporting 
various business intelligence needs such as the decision support and data mining activities 
common in on-line analytic processing (OLAP) applications. As a result, business data 
have typically been off-loaded to secondary systems, then processed with specific analytic 
and data mining toois. For scientific data, in many cases the data was never collected in a 
DBMS in the first place, and so the analysis and visualization takes place on the original 
flat-file format. This is a painful solution, because a DBMS has much to offer in the 
overall process of managing and exploring data. 

Of late, industry and the research community have been pushing to develop DBMS-based 
systems that will break this mold, and provide the needed support OLAP. The recent 
activity in OLAP [GC97], multi-dimensional databases [TD96], ORDBMS [SM96], and 
the TPC council’s TPC-D [TPC98] benchmark all testify to the strength of this new 
direction. This is a promising change of focus. OLAP optimizations are much closer 
than on-line transaction processing (OLT ) to supporting the interactive computational 
data analysis (ICDA) activities. that take place in scientific domains. OLAP and ICDA do 
not, however, represent the same type of workload. In fact, little is known about these 
differences, and about exactly how DBMS technology fails to meet ICDA needs. We 
explore this issue in some depth, describing an evaluation of DBMS technology for large 
high-dimensional computational data from ASCI. We have found that the technology is 
much closer to being able to support this activity than many think. Furthermore, there is a 
fairly clear evolution path that should lead to full support once the technology catches up 
to ICDA requirements. This might happen with the major vendors within 5-7 years. 

This report serves several purposes. The first is to introduce the particular stresses that 
computational science place on a data management infrastructure. This highlights how 
and where available DBMS technology does not fit ICDA requirements. Second, the data 
being generated in ASCI has many commonalties with computational data from other 
scientific domains, and to a large extent, to OLAP data. Understanding it will help make 
sense of ICDA application needs, and may also provide insight into future requirements 
of business-oriented OLAP data. Third, there are no stable and well-known benchmarks 
that serve the area of ICDA. We do not attempt to create one. However, the ideas, 
descriptions and issues that are described provide useful input that could lead to such a 
benchmark in the future. 



The paper is written for an audience with a background in computer science, although 
much of the document is accessible to anyone with a technical background. Throughout 
this document there are pointers to code, schemata, case studies, or other details of this 
study that can be found on the web. The rest of the paper is organized as follows. Section 
2 describes some related work. Section 3 details the characteristics of computational data, 
the corresponding implications for ICDA, and the potential benefits of using commercial 
technology. Section 4 is the heart of the document. It summarizes the issues and 
advantages of the various DBMS options in a list of brief statements. Then in the second 
half of Section 4, the supporting data for each of those statements is explained in detail. 
Section 5 closes with a discussion of new technologies that are worth keeping track of, 
research and development directions, and pointers to further information. 

2 Related Work 
For the past several years, DBMS performance measurements have been dominated b 
the tests supported by the Transaction Processing Council. The two current benchmarks 
supported by the Council are TPC-C and TPC-D (A and B are already defunct). TPC-C 
[TPC98] measures the OLTP performance of a system, and so provides information on 
transactions-per-second (TPS) throughput rates for simple queries in multi-user settings. 
TPC-D measures OLAP performance, providing TPS and cost/performance information 
within the context of multiple users running complex queries that include updates to the 
original data. There are other benchmarks that measure different aspects of DBMS 
performance for different types of applications, such as those found in Gray’s handbook 
[Gra93], and those offered by the OLAP council [OLA98]. The value of any benchmark, 
though, is strongly dependent on how closely it matches the workload of typical 
applications of interest to an organization. ,As described in detail in Section 3, the match 
between OLAP, OLTP and ICDA is not strong. 

The bulk of performance papers published in recent years have been geared towards 
measuring specific tasks or sub-systems within a DBMS. Some examples of this include 
work on topics like pointer swizzling [WD92], or extensible arrays [Rz96]. There have 
also been a multitude of in-house studies in industry that focus on measuring performance 
for specific applications. The results of these studies add to the lore that surrounds the 
database world, but they are very difficult make practical use of. In general, there is little 
information to be found concerning broadly applicable performance studies for large- 
scale scientific applications. 

There are several descriptions of the data from other scientific domains, along with the 
corresponding difficulties in managing that data. In particular, earth observing satellite 
data (EOSDIS) has been described in many places [BS95, NAS91]. This data is similar 
to the ASCI data described below, but the desired exploration mechanism differs, as well 
as the source of the data, and the (very important!) cultural aspects that control how the 
data is accessed and utilized. The human genome project, which involves small, highl 
complex data with different analysis requirements, has been described in [Goo95]. The 
data collected in the high energy physics community is different in form from 
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computational data, and has access patterns that are similar in many respects to OLAP 
[MM97]. Several other large-scale applications and the respective OODB solutions are 
described in [CL97]. This paper concentrates on how to support ICDA tasks on data 
generated by computational scientists. 

3 Computational Data 
ASCI data is primarily mesh data, which is one of the most basic and commonly used 
conceptual models for describing physical systems with computer models. A mesh 
provides a way of breaking a surface or volume down into an interconnected grid of much 
smaller zones (see Figure 1). Each zone stores a range of computed or collected 
variables. The hope is that if the zones are small, the micro-scale properties and 
interactions can be modeled with enough accuracy to provide precise predictions of 
macro-scale events. The hope of improving the accuracy of the overall model by creating 
meshes with larger numbers of smaller zones leads to irresistible urges to create meshes 
with extremely fine granularity. The main limitation is the additional storage and 
computational costs incurred by increasing the number of zones in a mesh. Current hero- 
level capabilities are at the scale of a few billion zones; a more typical range is between 
tens of thousands, to tens of millions of zones. In general, the computational data we 
generate will always be at the edge of our computing and storage capability. 

Characteristics 
The mesh data is typically stored in highly structured binary flat-files, using standard low- 
level self-describing formats like NetCDF [RDE93] or HDF [HDF98]. The mesh is 
accessed through high-level API’s (such as Silo or Exodus) that provide methods to read 
and write individual components of the mesh directly, without reading the rest of the 
structure into memory. The data itself is also highly structured. The 2 and 3- 
dimensional zones in a mesh are made up of lists of points, or nodes. For example, a 
cubic zone has 8 nodes that describe the comers of the cube. Nodes have X, Y, and 
coordinates, whose values can change if the particular mesh deforms over time. 
Variables can be assigned to zone centers, or to nodes. Variable values are recorded at 
each time step in a simulation, for each node and zone in the mesh. These are the basic 
components of any mesh, and there are several ways to extend this general framework. 
For example, for efficient visualization, lists are stored that record the zone faces which 
are on the surface of a mesh (and therefore need to be drawn), as well as edgelists that 
help when performing certain visualization computations. 

A few typical visualization-oriented operations are: (1) pseudo-color plots of a variable 
colored according to its value at different nodes and zones; (2) select and view an iso- 
surface in the mesh; (3) view an orthogonal slice or vector plot; and (4) play a movie of 
different time steps of the mesh. Each new operation is hand-coded and mar&l 
inserted into the visualization tool before being able to be used by a scientist. This 
domain, in Stonebraker’s terms [SM96], is a quadrant 3 and quadrant 4 problem. There 
is complex data, with the occasional need to support ad-hoc queries. 
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Figure 1 
This is a  rendering of a  small mesh depicting a  can being crushed up  against a  wall. 
In this figure, there are more than 10  variables stored in every zone; the velocity in 
the Z  direction is being displayed in this pseudo-color plot. This snapshot is taken 
from the 8th time  step of a  movie sequence that ends up  with the can completely 
crushed against the wall. This is a  pseudo-color plot of the velocity in the Z  direction. 



ICDA data management implications 
The computational ‘data described above is representative of typical ICDA (interactive 
computational data analysis) applications. The characteristics of a ICDA are clear1 
distinct from OLAP and OLTP. To summarize: 

l Few concurrent, local users. OLTP-style optimizations geared towards 
improving the overall throughput for multiple users may negatively impact single 
user performance. ICDA users are local, and there is little or no concurrent use of 
the same file. The expected system loads depend on the purpose of the machine 
in question, but even for the general servers, there will most likely be fewer than 
ten people accessing, browsing, or computing with the mesh data at any one time. 

l Write Once, Read Many. Any DBMS optimizations geared towards making 
- updates (insert, delete) faster may impede WORM performance. 

l Transactions are not needed. The top 2 conditions largely obviate the need for 
transactions. Optimizations that are aimed at improving TPS ratings are not 
meaningful here. In fact, it would be preferable to turn transactions off if that part 
of the code path in a DBMS could be avoided. 

l High dimensional, dense data. High dimensional business data is typically sparse, 
which can lead to some optimizations built into multi-dimensional database 
solutions that do not generalize to this data. 

l Emphasis on pure data throughput - Mb/s. Visualization of large data requires 
throughput rates comparable to native Unix. The tasks that the new data 
management system would need to support include the visualization capabilities 
that already exist, and the query-driven exploration capabilities that the quer 
interface would enable. The performance requirements of the two tasks are not 
the same, as depicted in Figure 2. Supporting visualization involves supplying 
large amounts of data, quickly, to code that draws a mesh, or computes iso- 
surfaces of, say, a zone variable. The primary queries involved in this type of 
work are likely to be range queries, where high throughput (Mb/s) is a must. 
Supporting the ad-hoc queries, on the other hand, is more likely to involve point, 
multipoint, extremal and other classes of SQL queries. While high data 
throughput is helpful here, a good query optimizer plays a more central role. 

l Large data. The data will be as large as the computational and storage platforms 
allow. 

There are extensive DBMS evaluation matrices available [CL971 to help make the choice 
of which DBMS to use, once it has been decided that a DBMS is an appropriate data 
management system for a task. These allow comparisons of platform support, transaction 
semantics, transactions per second, blob support, java support, and etc. Before this 
analysis is useful however, we must first answer whether a DBMS is a good choice. 
Understanding the characteristics of ICDA applications is a good first step to being able 
to answer that question. which we have explored above. Understanding the culture, and 
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the expectations of the ICDA community is the next piece of information needed to 
address the utility of the DBMS approach here. 

Visualization Exploration 

Point 

Multipoint 

Range 

Extremal 

Other 

throughput query optimization 

.Figure 2 
Estimated query spread for high-throughput visualization queries, and for highly 
complex lower-throughput query-driven exploradon of the dataset. Particular 
examples of queries can be found in the next section. 

The ICDA culture has a significant impact on the required data management and 
computational infrastructure. One aspect is that independent of how large or fast 
computers and storage devices get, the available system will always be used to its limits 
by choosing meshes with ever-increasing numbers of zones. ASCI machines have 
already reached more than 1 sustained Teraflop, and this year should see more than 3 TF. 
Storage will be in place by the end of the year that includes at least 25 TB of disk, about 1 
TB of main memory, and over a petabyte of tertiary storage. The ASCI machines will, 
however, be quickly used at capacity. The typical pattern of usage, common to man 
large supercomputing centers, is to select a job, and give it full access to a significant 
portion of the available disk and compute resources. The job will run, using the bulk of 
these allotted resources. Once finished, the mesh and resulting data will be off-loaded to 
tertiary storage to make room for the next run. Several boundary conditions on a data 
management solution fall out of understanding this mode of operation. 

1. Excellent per$ormance on legacy applications 
First, the underlying data management system must be fast. The typical ICDA system 
is based on API’s built over specialized binary data formats (such as Silo and 
Exodus). These systems are fast. For example, Silo runs within .50%, and usuall 
within 90% of the peak throughput (in MB/s) of Unix fread/fwrite performance for 
sequential reads/writes of very large files using optimal request sizes. For ASCI, an 
new data management system would need to be within at least 50% of Silo or Exodus 
performance, or the users will not accept it no matter what the new capabilities are. 
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2. Eficient use of storage 

This requirement must be treated carefully, however. There are ways to use new 
ORDBMS technology in a manner that does not impact legacy performance at all. 
Such an approach is described in the case study below. If the per$ormance of legacy 
applications is untouched, then the user might be willing to put up with poor 
per$ormance when I) the capability being provided is new, and 2) there is no other 
more practical or efSicient way to get the answer to that query. 

Second, due to the large physical size of the generated mesh data, the approach needs 
to be efficient in its use of storage space, and needs to be interfaced to a tertiary store. 
In particular, doubling or tripling the size of the original binary file is simply not an 
option. If space was not such an issue, a copy of the binary file could be loaded into a 
DBMS. Existing visualization functionality could be provided from the original data 
with no reduction in performance. New query-driven exploration functionality could 
be supplied from the data in the DBMS. Given the stringent storage requirements, 
however, even the cost of creating multiple indexes (let alone multiple copies) would 
have to be watched closely. 

3. Security 
Security can be a significant obstacle to any information system that brings groups of 
people together. The DBMS vendors have proven their systems capable of managing 
confidential business and financial data. They need to be re-validated on every closed 
system which has unique restrictions on which low-level communication protocols 
are allowed and which are not. 

4. Stability of the approach 
Finally, business issues play an important role. The more isolation that can be 
achieved from a single vendor solution, and from the consequences of a vendor 
failure, the better. This means that a DBMS would need to have access to (and 
comply with) widely accepted standards for communication and querying, and that 
the product would need to be offered by a strong vendor. 

Potential benefits of DBMS technology 
There are several powerful draws to commercial technology that make it worthwhile to 
find a path to merge the requirements of ICDA and business computing. 

1. Advanced data exploration capability, such as ad-hoc querying through SQL 
The value of our data rests on our ability to explore and analyze it to achieve scientific 
goals. The most immediate draw of DBMS technology is the enhanced data 
exploration possible with the integration of an ad-hoc query facility (accessed through 
SQL) and a visualization tool like that used to create Figure 1. For example, the 
following types of queries would be very useful to an ASCI scientist, but they are not 
currently supported in ASCI: 

Example 1: Highlight all zones and their nearest neighbors for which zone 
variable pressure > a but acceleration in the X axis is xaccel <p 



2. Ease of generating new queries 

Example 2: Display the bounding box that includes these zones, or cut the rest of 
the mesh out and only display the selected zones. 

Example 3: Return a list of meshes for which, from time step 1 - 5, zone variable 
pressure was greater than a for at least 3 time steps. 

Example 4: Of the meshes returned, what were the initial of each of the material 
mixes 

This type of exploration would be a valuable extension of the capabilities available to 
the domain scientists who are responsible for understanding and characterizing large 
datasets. In order to provide that capability without DBMSs, one would need to 
develop an in-house query interface built on top of the existing data models and 
formats. The optimizer would involve a significant amount of effort. 

Flexibility is a key benefit of DBMS technology. The ad-hoc query mechanism gives 
the user a simple interpreted language with which to interact with the data. To ask a 
new query, the user writes a new SQL query. The query on the DBMS side can then 
be shared and used on any other dataset with the same relational model. Current 
approaches to ICDA tools are not very flexible; each new type of query basicall 
requires some off-line development before the scientist can run it. The query on the 
ICDA side can not be shared because the underlying data model and formats are like1 
to be different. 

3. Being in a position to profit from the forces driving the computer industry 
The database market is an 8 billion dollar market this year, and growing rapidly. The 
Palo Alto Research Foundation has the data warehousing and data mining markets at 
15 billion and growing at upwards of 40% a year. The major computer vendors have 
made it clear at high performance computing forums such as the Salishan conference 
that this business market is what is and will be driving their efforts, rather than the 
much smaller scientific computing community. If the ICDA community could make 
use of these commercial systems for data management and access, then the forces 
driving the computer industry would be driving the industry in directions more 
directly relevant to the ICDA community. This impacts high performance computers, 
available tools, and the availability of relevant technical skills in the workforce,. 

4. Access to a wealth of tools developed by 3rd party vendors, and academic research 
There are a host of exploration, analysis, documentation, integration and 
organizational tools created by 3rd party vendors that work on the major commercial 
DBMS systems. Being able to buy and use such tools off the shelf is much more cost- 
effective than building them in-house for each different ICDA data model and format 
in a scientific community. There is also a very large and active community of 
academic database researchers; access to this large research community has several 
intangible benefits ranging from workforce skills to mainstream research with 
immediate impact on ICDA problems. 

5. Portability of applications through industry-wide standards 
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Current ICDA visualization and other exploration tools are tied to the underlying data 
formats. These formats are not standard, and the I result is that much work is 
duplicated across the National Labs and the scientific community as a whole in 
writing code for similar functionality over similar data stored in different ways. SQ 
(Standard Query Language) is an industry standard language for accessing business 
data stored in relational DBMSs. The RDBMS data model and query language is 
based on relational algebra, and relational calculus, both of which have strong 
mathematical underpinnings. There are also wide-spread communication protocols 
across DBMS systems such as ODBC and JDBC. Access through standard interfaces 
to data at multiple levels would allow the ICDA community to readily share data, 
tools, and labor. 

6. Distributed, parallel data manipulation for ’ ‘jkee” 
The major DBMS vendors provide parallel DBMSs where data can be partitioned b 
rows or columns or tables across multiple disks in a system. Tasks can also be 
distributed to multiple server instances. The query optimization routines then 
(attempt to) determine optimal access patterns to that data. Furthermore, as 
computing clusters and business needs evolve, market forces will require DBMS 
capabilities to evolve as well in order to stay competitive. Parallel capabilities in 
current ICDA environments require a great deal of in-house effort to achieve an 
acceptable level of performance and accuracy. 

7. Access to a diverse collection of current and future capabilities 
There are a large number of other capabilities that are linked to commercial DBMS 
technology. Some may have value for scientific data management, such as: 
persistence, CORBA, COM, direct integration of the web with the DBMS, digital 
library interfaces, standard metadata repositories, extensible systems that can handle 
multimedia and quality of service, spatial data blades or cartridges, data cleaning and 
transformation tools, and etc. The enormous size of the DBMS market, and a fruitful 
research community provide a large range of options and extensions to the basic 
storage management and access capabilities of a DBMS. 

4 Commercial options and viability 
This section contains a summary of conclusions, followed by supporting arguments for 
some of the statements made. The statements preceded by “**” are described in depth in 
the second half of the section. Several prototype implementations, small-scale 
performance studies, and design experiments have been carried out in generating these 
conclusions. It seems that in this industry, the ratio of promotional hype to reality is so 
high that without such experimentation, it is very difficult to get good information at 
anything but a gross level. 

Summary of Options 
The pros and cons of using the three major categories of commercial DBMS approaches 
for ICDA applications are considered here. The most prevalent systems by far are 
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relational. RDBMSs have been on the market since the early 70’s. Object-oriented and 
object-relational DBMSs are considered in here as well; these make up a much smaller 
market segment. The object-relational approach is likely to outgrow relational and object- 
oriented approaches, and become predominant over the next decade. 

l ODBMS 
Advantages 
1. The object model is a powerful approach to data modeling, making it easy to build 

models that are representative of the data, and more naturally fit the structure of 
data in the scientific domain. 

2. Navigational queries are much faster than in relational systems, and association 
queries (find data based on its characteristics) can be faster. This is due to less of 
a focus on OLTP workloads and ad-hoc query processing, and a data model more 

- suitable for array processing. 
3. These systems point the way for RDBMS, and to an.extent ORDBMS evolution. 
Disadvantages 
4. There is a very weak standards base for the object query language (OQL), and the 

object definition language (ODL) [Cat96]. Each vendor has a different quer 
interface to the data, which tends to tie applications to a single vendor. This 
results in less stable products, and limits the number of 3rd party tools available. 

5. The market for 00 databases has always been small. With the major RDBMS 
vendors making very strong ORDBMS bids, a serious danger is that the ODBMS 
market will dry up. 

6. Security can be a big issue. The ODBMSs more focused on providing fast, 
persistent object stores for C++ may provide high performance by having the 
storage system working within the same address space as the program (thus 
avoiding a context switch for simple updates). Malicious user programs can be 
written that will use this to access system calls. 

Myth 
7. **“ODBMSs are RDBMSs with object capabilities”. Actually, man ODBMSs 

are primarily persistent object storage systems for C++, smalltalk, JAVA and 
other 00 programming languages. 

8. **“ODBMSs are fast”. The speed advantage can be hard to realize. The speed 
depends greatly on the schema, the query structure, the physical layout or 
clustering of the data on the disk, the optimization routines, the underlying DBMS 
architecture, and so on. 

ODBMS Conclusions: ODBMS has had several technical advantages in the past, but 
has not been able to capitalize on them. Now much of the technical advantage has 
been lost with the onset of object-relational systems from the major vendors. As time 
goes on, the ODBMS market seems poised to wither away. Of the potential benefits 
for ICDA moving to commercial technology listed in Section 3, choosing ODBMS is 
not likely to result in #3,4,5 or 7 coming true. Moving to ODBMS at this point in 
time does not seem beneficial. 
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. RJIBMS 
Advantages 
1. The RDBMS market is very strong and growing, and the major vendors are 

relatively stable. 
2. Standard interfaces to RDBMS data have been in place for a long time, at several 

levels of abstraction. This is what has enabled #4 below. 
3. RDBMS products are relatively mature, which has many advantages inc1uding.a 

large pool of experienced labor, knowledgeable customer support from vendors, 
fairly efficient software and well understood query optimization technology. 

4. There is a large base of 3rd party tool vendors that offer a wide range of software 
for accessing and manipulating data stored in RDBMS. This wide base of tools 

_ makes an RDBMS the basis for a highly flexible, end-to-end data management 
capability, from design to storage and finally access. 

Disadvantages 
5. **Performance of these systems is very poor for ICDA, independent of the 

vendor. In the performance studies run below, slowdowns of 5 to 40x were seen 
for simple range and multipoint queries critical for ICDA. 

6. **A significant drawback of relational systems is the clumsiness of the data 
modeling paradigm. For example, representing, accessing and computing with a 
multidimensional array is an extremely painful exercise in a relational system. 
The model is capable of representing arbitrarily complex objects, but the result is 
often far from intuitive, or efficient. These complexities can be hidden with 
views, for an additional layer of computing. 

Myth 
7. “Stable code” Any complex piece of software that is optimized to perform well on 

specific platforms will never be stable as long as the underlying platforms are 
replaced every other year or so. 

8. **“Scientific data is too complex for RDBMSs”. Existence proofs exist in the 
human genome domain, and EOSDIS that contradict this claim. Complexity of 
the underlying data is certainly an important issue, but alone is not sufficient to 
disregard this approach for data management needs. 

9. **“RDBMSs are fast due to excellent query optimization benefits” This is just 
simply not true, as the performance study below details. Query optimization 
speeds things up, certainly, but does not get close to the capabilities of the I/O 
subsystem. DBMSs are still overwhelmingly compute-bound. 

RDBMS Conclusions: The strengths of RDBMSs cover the weaknesses of ODBMSs. 
The main difficulty, however, is in the area of performance. RDBMS solutions 
require too much space, and are too slow to support legacy ICDA applications. This 
problem is independent of which vendor is used; it falls out as a result of the 
relational model, and the requirements of their OLTP customers. These approaches 
are not practical for ICDA currently, and they are not likely to be in the foreseeable 
future. 
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. ORDBMS 
Advantages 
1. **ORDBMS combines, in theory, the modeling capabilities of ODBMSs with all 

2. 
the RDBMS advantages mentioned above. 
**ORDBMSs have fantastic potential for speed. As tested below, the approach is 
still only within 3-15x of native Unix. However, the approach is capable of 
providing near-native Unix fread and fwrite performance levels. 

3. ORDBMSs have been in the planning stages for the major DBMS vendors 
(Oracle, Informix, IBM) for several years now, and the advantages of merging ” 
object and relational approaches have been proclaimed by the research communit 
for much longer. There is little doubt that ORDBMSs are “the wave of the future” 
as Stonebraker so aptly argues [SM96]. Nearly all of the potential for DBMS- 

- oriented growth lies in this area, at levels that bode well for market share, vendor 
support, and 3rd party tools. 

4. **This approach will be part of what eventually unites the ICDA and the OLAP 
data management systems. 

Disadvantages 
5. **There are no tested, bullet-proof approaches yet for how to integrate 00 data 

into the relational query interface. This means that any application that relies on 
one style of interface will be largely tied to a single vendor. 

6. **This is a new approach, and the instantiations of it being offered by the major 
vendors are not ready for general consumption. There is no delivery yet on the 
potential advantages mentioned above. 

7. Vendor support is limited since none of the support staff understands the new 
technology in any depth. 

8. **The interface to the new capabilities is buggy, fragile, limited, and at times 
completely bewildering. 

9. Performance is hard to achieve, and can not yet deliver on the potential the 
approach shows. 

Myth 
10. **“Saves time” At this point, utilizing the OR aspect of the system to provide 

access to ICDA data is so difficult, that the time might be better spent being 
amortized over many smaller projects focused at extending legacy ICDA systems 
to allow ad-hoc queries, indexes, and etc. 

11. **“More flexible” In building the 00 data into the relational system, several 
restrictions are placed on the object - views if you like. The views limit the 
flexibility that might otherwise exist in the object. Furthermore, the access 
method that is created to support the external object will only be effective under 
certain rigid conditions. 

12. “00-level modeling” Full object-oriented models are not yet supported. 
Furthermore, in building the external data into the relational interface, much of the 
object-oriented aspect of that data is lost. SQL, the relational DBMS interface, is 
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still the primary interface to the data, with the result being a somewhat less 
satisfying middle-ground than one could hope for. , 

ORDBMS Conclusions: The potential for this technology is striking in terms of 
performance, flexibility, and ties to the business marketplace. This technology is onl 
a few years old, and as such there are several issues to be worked out, as described 
above. Currently, it is not ready for prime time ICDA applications. This is not due to 
limitations of the approach or different goals of the main customer base (as with 
RDBMS), or due to market, standards or query support problems (as ORDBMS). The 
difficulties stem primarily from the novelty of the approach. The main danger for 
ORDBMSs is failure of the approach due to the complexity of making use of it. 

This option should be revisited in 5-7 years. By then, chances are that the technolog 
will be fully capable of providing all the benefits listed in Section 3. In fact, this 

’ technology could be the basis for a more radical merging of widespread scientific 
data, as underlying data models that support ICDA data such as the Vector Bundle 
Interface could be built and utilized efficiently from within an ORDBMS system. 

Supporting Arguments 
This section provides more in-depth arguments that support the statements made above 
that may be more contentious, or were reached as result of a more in-depth case study. 
The case studies are described below, and more information can be found on the web at: 
httP://www.llnl.~ov/*/dbms/index.html. This web site contains code samples, 
Derformance tests, schemata. talks. and so on. 

ODBMS 7 Myth: 
“ODBMSs are RDBMSs with object capabilities “. Actually, many ODBMSs are primarily 

persistent object storage systems for C++, smalltalk, JAVA and other 00 progmmnting 
languages. 

C-H is a weak 00 language with no persistence. Man ODEMSs provide a full 00 
wrapper and persistence to C++ in a manner that hides the large bulk of the interaction 
with the DBMS from the user. Unlike relational systems, ODBMS do not focus on 
OLTP, and thus typically can not support large numbers of concurrent users, or high 
transaction loads. Also, due to the lateness of the ODMG group coming out with 
standards [Cat963 for object querying and the object definition language, it is only ver 
recently that the 00 vendors have begun to show standard OQL or SQL interfaces to 
their data. The very lack of a standard query interface in p-&t shows the much smaller 
focus ODMJ3S vendors have on supporting ad-hoc queries, as compared to their focus on 
providing a persistent 00 layer for programming languages. 

ODBMS 8 Myth: 
“ODBMSs are fast”. The speed advantage can be hard to realize. The speed depends 
greatly on the schema, the query structure, the physical layout or clustering of the data on the 
disk, the optimization routines, the underlying DBMS architecture, and so on. 

15 



Navigational queries in a ODBMS are fast, as they are pointer traversals in physical 
address space, compared to the hash table and index lookups that need to be done in a 
relational system. Association queries, however, can be slow. Associations involve 
finding data by the properties listed in an SQL“where” clause. In these cases, the 
advantages over RDBMSs are not striking. Performance depends on how the data is 
physically clustered on disk. ODBMSs typically allow clustering by objects, but ad-hoc 
queries over small portions of many objects (such as what would be seen in the high 
energy physics community) are troublesome, especially for those vendors that provide no 
support for building indexes. -The schema definition can lead to difficulties, especiall 
where foreign key references”are used, rather than object ids. As with any DBMS, the 
performance tuning knobs are so many that it takes an expert (or a lot of time) to squeeze 
acceptable performance out of the system. 

ODBMS * Conclusion: 
ODBMS has had several technical advantages in the past, but has not been able to capitalize 
on them. Now much of the technical advantage has been lost with the onset of ORDBMSs 
from the major vendors. As time goes on, the ODBMS market seems poised to wither away. 
Of the potential benefits for ICDA moving to commercial technology listed in Section 3, 
choosing ODBMS is not likely to result in #l, 3, 4, or 7 coming true. Moving to ODBMS at 
this point in time does not seem beneficial. 

It is difficult to make a strong argument for ODBMSs. The navigational performance of 
ODBMSs is excellent, and given good clustering, associational performance can be 
relatively good as well. But, the ODMG has only recently agreed on a set of standards for 
the community [Cat96], and many of these are still not fully implemented by the major 
vendors. Schema evolution (a very important task in evolving scientific domains 
[CGM98]) is much more difficult within ODBMSs. There is very limited 3rd part 
vendor support, and in general, the very future of ODBMSs is very unclear with the 
entrance of the maior relational vendors into the ORDBMS market. 

RDBMS 5 Disadvantage: 
Per&ormance of these systems is very poor for ICDA, independent of the vendor. In the 

pelformance studies run below, slowdowns of 5x to 40x were seen for simple range and . 
multipoint queries that are conmou for ICDA. 

Performance Testing Considerations 
The standard that a new DBMS-based implementation must compare favorably to is the 
existing legacy system in use on the scientist’s desktop. For ICDA applications, this 
typically means comparing to native unix fwrite and fread performance with optimal 
block sizes (NU). For the purposes of this study, single node performance only is 
compared; it is a good indicator of what parallel results would be, since both NU and 
DBMS can be parallelized in similar ways.. It might be reasonable for a DBMS-based 
system to expect that coming within 30%-50% of NU performance would be acceptable 
on the low end for some users to take an interest in the new capabilities being offered. 
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Generating fair and repeatable comparisons between any two systems is hard due to the 
number of variables that impact the validity of a comparison. Good benchmarks would 
help, but as mentioned in Section 2, there are no widely accepted benchmarks available 
for testing ICDA types of applications on DBMSs. This section does not define a new 
benchmark for ICDA. The goal has been instead to develop a set of tests that help clarif 
the performance implications of supporting ICDA-style queries with a NU-based 
approach, compared to asking the same set of queries against a DBMS-based .approach. 
For the evaluations carried out in this part of the study, NU and DBMS performance is 
measured against the different classes of SQL queries laid out in Section 3. For each 
query class in Section 3, several simple, generic queries were constructed, examples of 
which can be found at http://www.llnl.gov/*/dbms/file/measurements.2. 

Sever-al issues come up when comparing two such open-ended approaches to data 
management. Some are well known, for example the tests should be run on the same 
system, and under the same conditions with respect to system load. The test suite should 
reflect a workload similar to the type of application that the system is meant to support. 
Some of the more interesting issues include: 

l Counting: Throughput in terms of Mb/s is a key measure of interest for this 
evaluation. Exactly what data is counted when coming up with that throughput 
measure? For example, if the system reads 1Mb of useful information from a 
3Mb interleaved array (but had to read the entire 3Mb to get the lMb), was the 
total amount of data read 1Mb or 3Mb? In the testing performed for this work, 
the answer is based on the apparent throughput to the application, and therefore 
is 1Mb. 

l DBMS Implementation Details: DBMS tuning plays an important in determining 
performance. First, for each type of query, several different schemata were tested, 
with several ESQL implementations of the query, and using several different 
combinations of indexes. This resulted in several hundred small-scale 
performance tests. The DBMS tests were run using ESQL through a C interface, 
since that is the likely interface for scientific applications. Tuning was performed 
on the system according to principles and hints found in [Sha92], and vendor- 
specific sources. The goal of the tuning was not to squeeze the last 20% out of the 
system, but to be careful enough in the tuning, configuration and testing so that 
full range of performance was understood. Examples of the actual DBMS (and 
NU) testing code can be found at http://www.llnl.gov/*/dbms/rdbms perfhtml. 
The architecture describing how a DBMS would fit into an ICDA system is shown 
at http://www.llnl.gov/“/dbms/archO.jpg. 

l NU Implementation Details: For NU testing, the data was arranged on disk in 
binary flat-files in much the same way it would be arranged for Silo or Exodus 
files. For a given query, the NU implementations were written to retrieve the 
desired data as effectively as possible. Several different NU implementations 
were written per SQL query to elucidate reasonable bounds on different potential 
NU performance. The implementation of the NU tests raises a few interesting 
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issues. First, upper bounds on disk I/O speeds can be established with freeware 
programs available on the Web that do excellent jobs of measuring overall disk 
performance. For example, a program’called “Bonnie” will measure character 
write, block write, rewrite, character read, and block read speeds. These numbers 
are not, however, suitable to be used as the throughput measurement .for NU 
implementations. This is because of the wa counting is done; interleaving, or 
reading large amounts of metadata or useless data will result in apparent 
throughput to the application that is much lower than that predicted by Bonnie. 

Second, choosing a reasonable NU implementation is a difficult task. One can 
always construct a NU test that will outperform the corresponding DBMS test on 
any query. An index can be constructed in C for NU, just as it can be in SQL for 
DBMS. But, whereas constructing and using an index in SQL is easy, doing the 

_ same from scratch in C takes much more energy, and so is usually done only in 
situations where there is a clear need. Because of this, three classes of NU tests 
were written for every SQL query: poor, good, and very good. As an example, 
consider a point query on a large array. The poor implementation basically reads 
through the array stored in binary on the file system, checking the condition of the 
query against each row of the array in turn. Each check is a system read. This 
linear search is the simplest, but also the slowest approach to this problem. The 
good implementation reads large chunks of the binary file into memory, checks 
for the proper condition, and continues until the proper datum is found. Finally, 
the very good implementation builds and uses an index. For an application in the 
current ASCI environment, if a particular point query is going to be used ver 
often, then the very good approach could be built into the visualization code. 
Without a typical DBMS-style query interface, however, it would be much more 
expensive to support fast, ad-hoc point queries to large multidimensional data. 

Cache. It is important to be able to separate out the impact of caching and 
memory on the performance of the storage hierarchy. The difference between a 
hot and cold cache can change the throughput by an order of magnitude or more. 
Isolating the cache allows one to predict what will happen with I/O performance 
as applications move from small-scale to large-scale, or toward tasks with low 
locality of reference (like some visualization tasks). To measure this impact, 
some operating systems provide specific commands that disable or clear the cache 
system. For others, mmap can be used to clear out the cache independent of 
memory size and cache associativity. 

RDBMS Results 
The tests performed over the course of the evaluation clearly demonstrated that RDBMSs 
do not provide the throughput performance needed for ICDA applications. The results 
summarized below are meant to give a flavor for the types of results that were generated 
in this process. These results are not meant to provide a comprehensive picture of the 
performance capabilities of any particular DBMS system; only a well written (and 
broadly accepted) benchmark for ICDA could do that. 
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The data in Figures 3 and 4 are from point and range queries, respectively. Point queries 
are the types of queries that one would expect a DBMS to consistently perform well on, 
mainly due to query optimization, and the relative ease of constructing and using indexes. 
The tests were constructed on fairly simple point queries with 2-4 conditions in the where 
clause. Indexes were constructed based on those conditions. The size of the data being 
stored ranged from several hundred kilobytes, to several hundred megabytes. Multiple 
operating systems, and multiple DBMS vendors were tested during this evaluation. 
Finally, the tests were conducted with both hot and cold caches. 

As shown in Figure 3, for the point queries, the DBMS performed basicall on-par with 
the good NU implementations. When looking at NU throughput numbers, none of the 
implementations achieved more than 7% of the character read I/O capacity for the disk, as 
measured by Bonnie. The bulk of the tests showed results that utilized only l-3% of the 
expected I/O bandwidth. This is not surprising, given that only apparent throughput to 
the application is being counted. 

.6- 

.4- 

.2- 

DBMS 
NU Poor 
NU Good 
NU Very Good 

Max: 330kb/s 
LL 

2Okbls 

100s 
-20,000s 
117s 

1.86s 

Figure 3 
This figure depicts the throughput (in kb/s) achieved for point queries on a 
production server with several Mb of data. The NU tests were run on the same 
machine. The maximum character-per-second throughput rate (33OkbIs) 
measured by Bonnie is low here. The numbers changed on faster machines, but 
the qualitative comparison between NU and DBMS did not. 

The range and multipoint queries (Figure 4) were much less consistent between vendors 
than the point queries, and when compared to good NU implementations, total 
throughput rates varied from 5 to 40 times slower, even with substantial tuning. These 
tests were carried out with several different DBMS products, and on several machines 
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with data sizes that ranged up to 150Mb of “useful” data out of 500Mb total. The NU 
implementations reached maximum potential throughput within the first several Mb of 
data being read. The DBMS implementations flattened out much sooner, and at much 
lower throughputs. 

, 

It was interesting that the throughput rates achieved by different vendors varied on the 
order of 50-100%‘. It turns out that the main difference comes from how often the 
DBMS server is contacted. For example, for one vendor, a C structure can be passed into 
the ESQL statement, and directly loaded with one call to the server. A second major 
vendor has no other mechanism but to fill up 32kb buffers one tuple at a time, and send 
that buffer via a cursor. This defeats the potential speedups that could be gained from 
range queries that scan clustered data on the disk. Another interesting note is that for 
small data, whereas the NU implementations ran anywhere from lo-50 times faster with a 
warm cache, the DBMS implementations consistently gained only about 10%. For larger 
datasets, the cache had much smaller beneficial effects, in particular for the NU tests. 
This most likely reflects the fact that the RDBMS is a compute-bound system. 

kb/s 
10,000 

1 

DBMS 

/-“--, 
NU Good 

,ooo I’ . __._.._..__._.._..__..__.____.__._..___._ -Max: 1.1 Mb/s 

Warm start 
Cold start 

; 1 
Mb of “useful data” 

Figure 4 
This figure depicts throughput results for range queries that had to retrieve 
several Mb of “useful” data. This particular test was run with all the data being 
useful to the query. The throughput for this system was also fairly poor, with 
block reads reaching only 1. lMb/s max. This chart shows 5-8x performance 
dropoff on cold starts. For larger datasets on faster machines we saw 10x to 40x 
performance dropoffs, independent of vendor. For more information, see 
http:Nww.llnl.govl*ldbms/fileldmf97.ppt. 

’ While large, this variance does not substantially impact the overall conclusion of these tests (RDBMS 
performs poorly for ICDA data). 
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RDBMS 6 Diiadvantage: 
A significant drawback of relational systems is the clumsiness of the data modeling paradigm. 
For example, representing, accessing and computing with a multidimensional array is an 
extremely painful exercise in a relational system. The model is capable of representing 
arbitrarily complex objects, but the result is ofien far from intuitive, or e&ient. These 
complexities can be hidden with views, for an additional layer of computing. 

The basic type system in an RDBMS is very simple and straightforward. The relational 
model represents data with a collection of tables, each of which is composed of a set of 
unordered tuples. Each table has a set of columns orfeatures that define the table, for 
which every tuple has a value. Each feature can contain a basic data type such as char, 
int, string, date, float, and etc. Each table has defined for it aprimary key, which is the 
subset of features that uniquely defines a tuple in a table. For a more in-depth 
introduction, see [ZMF97]. Some major elements of this model are: 1) it is set-based 
data, rather than ordered data; 2) there is no implicit memory indexing (see below) as 
found in most programming languages; 3) there is no mechanism for specifying methods, 
inheritance, or other object-oriented modeling features; and 4) there is a only a limited 
notion of abstract types. The extent of conceptual mismatch between this data model and 
a standard one that would be found in ICDA application code means that in using a 
relational system, the user will be required to maintain two data models - that of the 
application, and that of the DBMS. The translation code between the two can be non- 
trivial, and can easily reach thousands of lines of code. 

In the relational model, even the simple definition of a vector becomes tedius. Since each 
table is officially a set of tuples (rather than an ordered list), the only way to insure that 
the jth element of array X is returned is to have a table that stores an index as the primar 
key, along with a second feature that is actually the value of X. This increases the 
required storage space, and increases the complexity of accessing elements of X in a 
query. As a brief example in the 1 dimensional case, to represent X(j), a table could be 
constructed with the name Table-X, a primary key (or feature) “index”, and the value: 
Table-X(index, value . To find the value of X(3), one would need an SQL query similar 
to: 

Select value from Table-X where index = 3; 
While this is not too bad, it grows much worse in multi-dimensional cases. On the 
positive side, once in a table, we can ask very interesting, ad-hoc questions over the 
values and the indexes for X. If the return set is small (like in a point query, or a small 
multipoint or range query) and if the indexes have been built correctly, the returned 
answers can be on par with, or faster than a good NU implementation. 

Another uncomfortable aspect is the typing that must occur in the schema. In the table 
Table-X above, the feature “value” must be declared as a float, an int, or etc..at schema 
definition time. A mesh, though, may have zone and node variables of mixed types. 
Representing this flexibility in a relational schema is messy, or requires a different 
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schema per mesh. Furthermore, many of the optimizations enabled by the RDBMS quer 
optimizer will not work unless the types of all the arguments match. 

Most RDBMS vendors extend the basic relational system to some extent. Some 
extensions are introduced below. For the most part, while they are welcome additions to 
an otherwise spartan data model, they do not go far enough to comfortably support 
complex structured data in a natural way. For example, blobs (binary large objects) of 
some form or another are common. Blobs are large, uninterpreted bundles of bits, in 
some cases up to multi-Tb sizes. They are good for storing images, or in some cases 
large arrays. They can be attached to tables as a feature in many cases. The main 
drawback is that while access to the contents can be based on offsets from the start of the 
file, there is no SQL access to the interior of a blob, and thus blobs are useless when 
queries over that data are desired. Other extensions include: date and money native types 
(for business data); stored procedures that represent compiled (i.e. optimized) SQ 
queries; triggers for consistency checking; and complex types that allow the definition of 
a row type as a vector of simple types for use in schema definition. 

There are formal methods for constructing normalized BCNF schemata. We did this for 
mesh data as handled in the Silo format, then extended it for reasons of efficiency and 
flexibility. The schema, and code to load this schema from a silo file can be found at 
http://www.llnl.gov/*/dbms/index. html. Itrnightilluminatesomeoftheissues 
that are mentioned in this section. 

RDBMS 8 Myths: 
‘.‘Scientific data is too complex for RDBMSs”. Existence proofs exist in the human genome 
domain, and EOSDIS that contradict this claim. Complexity of the underlying data is 
certainly an important issue, but alone is not st@cient to disregard this approach for data 
management needs. 

While the representation issues in this context are significant, it is certainly possible, and 
in many cases profitable to use an RDBMS for managing scientific data. The Human 
Genome Project has a wide range of data requirements, from acquisition, to high level 
search and browse, to detailed analysis. The data is highly structured and interrelated, 
from the genomic data, to protein structure and sequence, to disease, and various 
functional data. In all, there are upwards of several hundred independent datasets in the 
community. While there is no standard set of tools used in this community, what is seen 
more often than any other choice is the use of RDBMSs. The use of relational systems in 
this community continues to grow. A starting point for related information is 
http://www.jgi.doe.gov/JGI40me.html. The EOSDIS project is another example of 
a scientific community using commercial relational technology. Information on this 
prOjeCtcanbefoundathttp://spsosun.gsfc.nasa.gov/New_EOSDIS.html. 

RDBMS 9 Myths: 
“RDBMSs are fast due to excellent query optimization benefits” This is just simply not true, 
as the pelformance study below details. Query optimization speeds things up, certainly, but 
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not yet close to the capabilities of the I/O subsystem. DBMSs are still overwhelmingly 
compute-bound. 

RDBMSs are still overwhelmingly compute-bound. There are many indicators of this, 
from the small ratio of actual throughput versus potential throughput achieved in the 
performance tests ran above, to the limited impact of the cache. 

In processing a query, there are many steps that take place. First, the query optimizer is 
run at the server. This represents part of the overhead for the entire query, and for large 
runs is a minimal part of the overall cost. A large part of the code path per tuple returned 
to the client involves locking, alignment, transaction management, tuple management, 
page management, and update, delete and insert facilities. Some relational systems 
require that each tuple returned to the client (in this case, our ICDA application) involves 
calls to the server that invoke much of the code path listed above. Other systems allow 
one server call to fill up large buffers and pass those back to the client. Independent of 
which RDBMS is used, however, due to the transaction semantics and consistency and 
correctness guarantees made by the DBMS, the result is that only a small fraction of the 
potential I/O bandwidth is used in responding to a query, even for large range and 
multipoint queries. 

ORDBMS 1 Advantages: 
ORDBMS combines, in theory, the modeling capabilities of ODBMSs with all the RDBMS 
advantages mentioned above. 

ORDBMS offer ODBMS-like modeling capabilities by allowing the user to extend base 
types with user defined types, to create and query over complex objects, to specif 
inheritance, and to specify rules or constraints over these objects. These extensions 
should help remove the limitations discussed in RDBMS #6 above. The ORDBMS then 
goes to great pains to build the objects into the relational model and the relational quer 
optimizer, in a way that allows the system to support ad-hoc queries. This overcomes 
what has been one of the main ODBMS limitations. Finally, a few of the ORDBMS 
vendors have re-worked their architectures to such an extent that near-NU performance 
should be possible in the future. 

There are several smaller vendors of ORDBMSs on the market, and three giants: IBM 
DB2, Oracle 8, and Informix IUS. DB2 is using its DataJoiner technology. Oracle is 
providing OR capabilities through cartridges, which are essentially component 
technology for DBMSs. Informix is providing a similar approach called data blades. 
Some details of an in-depth ASCI SDM evaluation of these products can be found at 
http : / /www _ ea. sandia . gov/ASCI/sdm/ . For evaluation purposes, we have worked 
with the Informix IUS. The reasons are: the IUS was available; the architecture has a few 
special features that make the IUS extremely attractive for ICDA applications; we had 
access to one of the core developers of IUS functionality at Informix; and to a point the 
issues we explored within are common to any ORDBMS product. 
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The RJS allows the user to build user-defined types (UDTs), and provide methods for 
accessing the data in those types. The system also provides hooks for presenting an 
interface to those new objects in terms of relational tables. This interface includes 
information that helps the query optimizer make better use of the new UDTs in 
responding to queries. The data blade approach allows collections of UDTs and the 
corresponding interface to those UDTs to be grouped into a package, and provided as an 
add-on to the DBMS. The hope is that 3rd party vendors will get interested in building 
blades, and selling them to ORDBMS customers. To an extent this has already started 
happening, and now there are blades for spatial data, text, digital media, and various 
vertical industries. 

One of the special features of the IUS is its underlying technology called the Virtual 
Table Interjace, or the VTI. The VT1 is the mechanism IUS uses to define the interface 
of the UDTs to the database. The interesting aspect of the VT1 is that it allows the data 
being described in the UDTs to sit outside the DBMS storage manager. In practical 
terms, for an ICDA application, this means that the original large binary object that legac 
ICDA applications work on does not need to be copied or modified. Legacy applications 
will continue to work as before. The VT1 essentially provides a way to wrap that binar 
object in such a way that the ORDBMS can see inside it, and provide query access to that 
data. This way, the query capabilities of an RDBMS are added to the ICDA applications 
without impacting the storage costs or access speeds for legacy data. 

DBMS IBMS . User writes 
c 

Open-table 

Begin-scan 0 
Get-next 

End-sea 

Close-table 

Figure 5 
At a very high level, an RDBMS architecture has a query engine, and a storage 
manager. The VT1 allows a good part of the storage manager to be defined as part of 
the interface to data that sits outside the realm of the DBMS. 

24 



r Figure 6 
TJser's L-J Screen 

I 
This figure shows an 
ORDBMS addition to a 
typical ICDA scenario. 
Silo is the native ICDA 
data format, and an API is 
available. Meshtv is the 
visualization tool. Two 
paths to the data are 
provided. If the query or 
visualization request can 
be answered by the legacy 
system, the Silo access 
path is used. If the request 
is for new functionality, 
the the ORDBMS path is 
used. Note that the 
ORDBMS can be defined 
in terms of the Silo API. 

ORDBMS 2 Advantages: 
ORDBMSs have fantastic potential for speed. As tested below, the approach is within 3-15x 
of native Unix. However, the approach is capable of providing near-native Unix fread and 
jivrite performance levels. 

The IUS VT1 approach (defined in ORDBMS #I above) has many implications. First, it 
means that using the VT1 requires one to build the access methods to the external data 
that basically provides a new storage manager for that data. This provides a great deal of 
flexibility, but can also be a lot of work. The benefit is that much of the RDBMS code 
path involving locking, page management, update delete and insert facilities, and etc. will 
be avoided. Furthermore, if handled properly, the communication between the server and 
the client can be cut tremendously. For large requests, the throughput capability of this 
new approach should be capable of reaching near-NU performance. 

Performance testing was done comparing the IUS to relational systems, and to NU. The 
tests were rnn in the same format as described above in RDBMS #.5, with the main 
modification being that the data model was changed out and replaced with a more object- 
relational approach. A full silo object-relational test was partially constructed, and can be 
foundathttp://www.llnl.gov/*/dbms/vti-code.html. Thetestingthatwasdone 
was performed on a much simpler binar dataset of our design (a set of vector variables 
and a corresponding schema and interface), and can be found at 
http://www.llnl.gov/*/dbms/or_perf.html. Thesimplerdatawasusedsinceit 
removes several uncertainties (schema design, interface design, query design) from the 
testing process, and allows us to focus more on performance of relevant queries. 
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Summarizing, the IUS ended up showing a 3-5x performance enhancement on the range 
and multipoint queries that were run against it. Unfortunately, it still ends up being 3-15x 
slower than NU, depending on the query and the NU implementation being used. We 
show an example of the test results below, more can be found at the web site above. 

.3 

Figure 7 
This figure shows the testing architecture. There is C timing code, with an 
ESQL interface to the ORDBMS. In the ORDBMS, the interface to the 
external flat file binary data is defined by specifying a set of relational 
tables that describe the data characteristics of interest, as well as the access 
methods that allow us to read the data. The tables for the external data can 
be mixed at will with the standard RDBMS tables. 

(range queries) 

kb/s 

c 1% 7% 33% -I 00% 

% of “useful data” 

Figure 8 
This figure shows a comparison of the IUS with an Informix and a Sybase RDBMS. 
The relational systems performed similarly. The good news is that the IUS is 3-5x 
faster than the relational systems. It is still 3-15x slower than NU, especially at the 
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larger range queries. IUS throughput at “100% useful data” is only 2% of the 
maximum apparent bandwidth, vs. about 45% at “7% useful data”. 

There are, however, several reasons for optimism here. First, since the ICDA data is 
stored outside the DBMS in its original format, legacy applications run at full speed. 
This alone significantly reduces the importance of the performance issue, since a user will 
be willing to tolerate slower speeds for new (and otherwise unavailable) data exploration 
capabilities. Second, there are several areas where the current version of the IUS fails 
(miserably) to live up to its potential. For example, currently the VT1 allows the user- 
defined access methods to prefilter the data on the client side. This is good, since the 
server need not be called for ever tuple. It still, however, requires every qualified tuple 
to have an expensive interaction with the server. When a tuple is at the level of an 
element of an array, this is very bad news. This level of interaction is not a feature of the 
VTIlnterface, but rather the current implementation of it. Informix expects this particular 
issue to be resolved quickly. 

ORDBMS 4 Advantages: 
This approach will be part of what eventually unites the ICDA and the OL.AP data 
management systems. 

The new ASCI data model, the vector bundle interface, may beto scientific data as 
relational calculus and relational algebra were to business data. Relational calculus 
provided a common underlying mathematical basis for RDBMSs. This in turn lead to a 
host of 3rd party tools that, to a large degree operate on any relational data. The VI3 
could provide this mathematical basis for ICDA data and applications. The ORDBMS 
would be the natural place to build the VBI into the relational model, by taking advantage 
of Oracle cartridges, or Informix blades. It may even turn out the data model that works 
for ICDA data would also be idea for OLAP applications that currently are relying on 
multi-dimensional database or data cube technology (both worlds need to be able to hand 
large arrays of numbers effectively). 

ORDBMS 5 Disadvantages: 
There are no tested, bullet-proof approaches yet for how to integrate the 00 objects into the 
relational query interface. This means that any application that relies on one style of 
interface will be largely tied to a single vendor. 

The current mode of integrating the systems is to pull the 00 data into the relational side, 
and try to treat it as much like relational data as possible in the query engine. A relational 
interface is built for the 00 data that wraps it, providing 1) a set of relational tables 
describing the data, and 2) a set of access methods for working with the data. At this 
abstract level, the large ORDBMS vendors look very similar. At the detail level of how 
this interface is actually specified, created, and used, there is little vendor agreement. 
Applications that go with one vendor are likely to be tied to that vendor for several years. 
Different ways of integrating the two approaches are bound to come up. 
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The current design has several weak points. First, query optimization is difficult now. 
The designer has the non-trivial task of collecting and providing the information the 
query optimizer needs in order to build the new 00 data into the relational “fold”. 
Second, it is no longer easy to do several things that are natural in an RDBMS 
environment. For example, there is no one line SQL command to create an index for the 
00 data that has been tied in. 

Third, by wrapping the 00 data and accessing it through the relational system, much of 
the potential flexibility of the system is stunted. While we have full flexibility in 
designing the external objects and access methods, the interface to that data must be built 
in terms of relational tables and external functions, which is limiting. For example, 
consider a large 2-D array stored outside the ORDBMS. To build this into an ORDBMS, 
there are several choices. A typical relational approach could be followed that has table 
with columns: “i”, “j”, and “value”. This would work, and would allow full query access 
to the data, but does not take full advantage of the new 00 capabilities. Instead, 
functions could be constructed that provide access to the object, like “retrieve” that takes 
as arguments (array-name, i, j), and returns the value. The downside of this approach is 
that any query that attempts to access the data in a way not preconceived and pre- 
supported through the functions in the interface may require new code to be written. In 
other words, the data is not explicitly represented (as with relational tables), and so true 
ad-hoc queries over the data may not be possible with “simple” SQL statements. 

In conclusion, the OR connection, while interesting, raises many sticky issues due to the 
difference in culture, capability, and basic data model. These issues will take time to iron 
out in such a way that the vendors have a consistent, standard powerful approach. 

ORDBMS 6 Disadvantages: 
This is a new approach, and the instantiations of it being offered by the major vendors are not 
ready yet for general consumption. There is no delivery yet on the potential advantages 
mentioned above. 

The ORDBMS has great potential, but at this point, none of the advantages described 
above are actually achieved. First, the modeling capabilities of ODBMS are onl 
partially accounted for. The RDBMS advantages of market, external vendors, standards 
and maturity are currently RDBMS advantages alone, and are not shared by the 
ORDBMS products. Second, the ORDBMS can be made faster than the corresponding 
RDBMS for ICDA applications, and should eventually reach near-native unix speeds. 
Right now however, this goal is still a distant one, as shown above. Third, while 
ORDBSs may be the wave of the future, and may enable a unification of ICDA, OLAP 
and OLTP data management systems, neither statement will actually come to pass within 
the next few years. 

Beyond not yet delivering on the potential advantages, the current products are 
complicated pieces of code, and are introducing a completely new way to interact with, 

28 



and manage data. The products are not mature, and the new OR mode of interacting with 
data is neither well nor,widelv understood. 

ORDBMS 8 Disadvantages: 
The interface to the capabilities is buggy, fragile, limited, and at times completely 
bewildering. 

There are three main issues that are discussed here: the unwieldy interface for utilizing 
the OR capabilities; the buggy, fragile and limited nature of the interface, and the 
overwhelming set of the data modeling options that the interface opens up. The specific 
examples used in this section to illustrate points concern the Informix Universal Server, 
as that is the system in use for the case study. However, based on the literature, and our 
experiences with the relational products from all the major vendors, it is safe to say that 
the conclusions stated above will apply equally well to any of the three large ORDBMS 
vendors. 

The current interface for the IUS to tie external data into the relational system takes a 
great deal of effort on the part of the DBMS developer. To internalize a Silo file, or an 
other external object, several chunks of code need to be written. Examples of this can be 
foundat http://www.llnl.gqv/*/dbms/vti_code.html ,andcanbebetterunderstood 
from the following Figure. To build the interface to the Silo data, we need to: 
1. Develop the high-level interface that ICDA users would use, which behind the sheets 

calls the interface defined in #2 and #3. For our case study, this would involve 
modifying the visualization products with some new features that allow different 
exploration of the mesh, supported by the ORDBMS. 

2. Define the new relational tables that define (in conjunction with the new user defined 
functions) the interface to the Silo data. The difficulty of the design depends on the 
specific project. The implementation is fairly simple, in SQL. 

3. Define the new functions that complete the interface to the Silo data. Both the design 
and the implementation difficult is driven primarily by the functions being created. 

4. Define the access methods used to replace DBMS-level storage functionality. The 
access methods are defined at a high level, to the ORDBMS. Methods are needed for 
things like open-table, begin-scan, get-next, end-scan, close-table, and etc. The 
definition includes function names, locations of the code, and etc. Implementation is 
in extended SQL. 

5. Write the code for the access methods above. These methods can be arbitraril 
complex, depending on how intelligent the memory management and disk 
management is, how complete the qualification system is, and how complex the 
external data is. The implementation must be done using a set of libraries that replace 
the Unix-based file and memory management routines with Informix versions of the 
same, since the IUS runs in a CPU extended virtual process. 

6. Compile the access methods, and place them in the DBMS extension code. 
7. Reconfigure the DBMS to create and handle the extent virtual processes properly. 
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8. Create tables in the ORDBMS according to the definitions above, and you are ready! 

Support: reconfigure, Interface: define, create 
Build high-level 
interface/exploration recompile, restart DBMS new relational tables 

capabilities 

/ , 1 / 

access methods 

new access methods to 
server 

Interface: write new 
functions on data 

Figure 9 
The second issue centers around the fragility and limitations of the interface. There were 
quite a few bugs and VT1 design problems, some more serious than others. We were 
using IUS Version 9.12. 
1. The VT1 use of a CPU extent virtual process causes several serious difficulties. First, 

standard RDBMS mirroring facilities do not work here. Second, while POSIX 
operations are supported, Unix file system operations are frowned upon, and *allot is 
forbidden. When writing the access methods (step 5 above), this means all interaction 
with external data must be written from scratch using the Informix libraries. In ICDA 
applications, this means that a large base of legacy code will not be available for use. 
For example, in writing the access methods for Silo data, the most beneficial course 
of action (in many ways) would be to use the Silo API in the ORDBMS access 
methods. This is not an option here. 

2. Bugs in the code for the access methods can corrupt the database. During the course 
of the case study, the test database (and unfortunately, once the public database) had 
to be rebuilt from scratch literally hundreds of times. This makes the potential 
consequences of buggy user code high for ICDA applications, and should give serious 
pause to users. 

3. There are several annoying aspects of the interface. For example, in the access 
methods that we write, every value returned to the server needs to be strong1 typed, 
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then loaded into a “pdatum” structure and sent to the server. This is slow, due to the 
server communication requirements. It is also annoying since we will not know ‘ahead 
of time whether the particular mesh variable of the particular mesh we are reading is 
int, float, double, or etc. This means a lot of ugly code in the access methods to 
handle type issues. 

4. There were a host of small bugs in the IUS code, including a broken qualification 
evaluation routine, incorrect specifications for the various machine architectures (that 
lead to database-corrupting crashes), and faulty type evaluation code. 

The third issue is that the extent of new options that are opened up to the users is 
bewildering. For the IUS, data can be stored with relational tables consisting of a variet 
qf standard basic types, as well as money, and date types. Then there are row types, 
blobs,- smart blobs, opaque types, distinct types, collections, sets, data blade module data 
types, and user defined functions and casts. Each of these options has a unique set of 
capabilities attached to them, such as query flexibility, bulk loading capability, different 
access methods and indexing options. They have varying degrees of self description, ease 
of use, and potential performance. Starting from knowledge of the RDBMS, or ODBMS 
worlds helps, but the learning curve is steep. Beyond that, the question of how to create a 
good object-relational design is largely unexplored territory. This is one of the most 
significant, and yet subtle dangers for the ORDBMS community. Powerful, but over1 
complex and hard-to-use technology is a niche commodity at best. 

ORDBMS 10 Myths: 
“Saves time ” At this point, utilizing the OR aspect of the system to provide access to ICDA 
data is so diflcult, that the time might be better spent being amortized over many smaller 
projects focused at extending legacy ICDA systems to allow ad-hoc queries, indexes, and etc. 

The ORDBMS interfaces currently require a lot of effort to make appropriate use of. If 
an ICDA application simply wants to provide ad-hoc query access to the data, and 
nothing more, a better choice at this point in time might be to implement such a system 
from scratch without using a DBMS. This would require the design of simple quer 
language, and a parser that implements it (this can be done in a day or two using 
I.&Yacc,seeexampleat http://www.llnl.gov/*/dbms/parser.html), alongwith 
code to read the ICDA data format in question (i.e. Silo) to serve the data. This code is 
similar to that needed to supply the access methods for get-next for the ORDBMS code. 

ORDBMS II Myths: 
“More flexible” In building the oo object into the relational system, several restrictions are 
placed on the object - views if you like. The views limit the flexibility that might otherwise 
exist in the object. Furthermore, the access method that is created to support the external 
object will only be effective under certain rigid conditions. 

This “myth” has a more uncertain status than others. We have argued in this text that the 
number of options open to the developer is so large, that it is nearly overwhelming. But, 
as described in ORDBMS #8, these options each carries its own set of limitations, and the 
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end result is that the current O-R integration approach introduces limits on the overall 
data model. Given a good design, the ORDBMS interface should provide very flexible 

! access to the underlying ICDA data, much more so than the pure functional interfaces that 
are standard in the community. This is because query access to the raw data is possible in 
the ORDBMS world, whereas in the standard ICDA framework, what is presented is a 
pre-conceived set of functions that provide some defined subset of functionality over that 
data. If the ORDBMS design instead provides an interface based primarily on functional 
interfaces to the external data, then not only is there little advantage in terms of user 
flexibility, but also the cost of modifying or extending the interface is likely to be much 
higher on the ORDBMS side. The point here is that ORDBMS is uot a magic bullet. 
Like any system, the new capabilities it brings to the relational DBMS world must be well 
used before they add value. 

5 Discussion 
One thing that became very clear during the evaluation is that there are three prerequisites 
that must be met simultaneously in ICDA applications. Unfortunately, every approach to 
data management seems only to be able to support two of the requirements concurrently. 
The prerequisites are: (1) small storage costs, (2) standards-based ad-hoc query support, 
and (3) reasonable throughput (Mb/s) performance. Most combinations of two actuall 
seem to be supported. For example, blobs do not consume much overhead storage, and 
have reasonable throughput performance, but do not provide good SQL access into the 
file. Alternatively, by keeping a copy of the data (thereby doubling or tripling storage 
requirements) in the original flat-file format outside the DBMS, legacy applications such 
as visualization will not see a performance degradation, and will get the ad-hoc quer 
capability on the data stored in the DBMS to boot. This observation holds for the current 
legacy systems as well. They support low storage costs with great performance, but do 
not support standardized ad-hoc queries against the data. 

To support ICDA applications like those found in ASCI, what is needed is a large, stable 
vendor that provides fully a operational query engine on top of a data server with flat-file 
like performance. This (hypothetical) system would probably have features like: 

1) Large, multi-dimensional array data stored outside the DBMS storage manager. 
This way, external applications can use the data without taking a performance hit, 
and without the large storage overheads. 

2) Mechanisms to plug this data into the query engine, in a way that queries can 
combine data stored in the DBMS with data external to it. If the standard SQ 
interface is to be used, this might require being able to create relational views of 
the external data, and then populating the views on the fly when a query hits the 
external data. Population would allow passing large collections of data from the 
external access methods, rather than passing 1 tuple at a time. 

3) Avoidance of as much of the DBMS code path as possible. To protect the 
performance gains, have the hooks in #2 be inserted so as to avoid as many of the 
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following as possible: locking, alignment, transaction management, tuple 
management, page management, insert and delete facilities. These features are 
much less interesting when there are few users on WORM data that is stored 
outside of the DBMS. 

ORDBMS vendors are beginning to close in on these targets, and may be viable options 
for supporting ICDA applications within 5-7 years. Technologies and trends to keep an 
eye on in the business community include: 
1. Clearly, ORDBMS technology should be closely watched, as currently this is closest 

to fulfilling ICDA requirements. 
2. The response of the ODBMS vendors to the new ORDBMS competition. They might 

be pushed into a new design cycle that leapfrogs current ORDBMS status. 
3. The datacube and multi-dimensional database approaches to OLAP, data mining and 

other business intelligence applications. Datacube and MDDB approaches work on 
large multi-dimensional data that can be numeric or text. They may grow into 
providing much of the functionality needed for ICDA, and may overtake much of the 
related market for data mining support in the business community. If they do, tools 
will be available that will enable easy communication between DBMSs and these 
tools, since business data will be their main driving force. 

4. The progress of underlying scientific data models and formats to a common standard, 
such as something based on the vector bundle interface. A common underlying data 
model alone might be enough to be able to easily make use of commercial scientific 
visualization packages like EnSight, and others that share that model. While this 
won’t realize all the potential benefits of being able to use commercial business 
DBMS technology, it would be a good start. 
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